
May 24, 2011
How to Apply a Tapered Load to Plates in RISA-3D
It’s easy to apply tapered surface loads to plates in RISA-3D by stepping up the loads from one level to the next.
In structural steel projects, the transition from design to fabrication is a common source of coordination challenges. One of the biggest pain points? Connection design. Whether it’s miscommunication on end reactions or unclear design intent, connection assumptions can break down in the gap between engineering and detailing. By using RISA-3D and RISAConnection—and leveraging direct integrations with SDS2 and Tekla Structures—structural engineers can streamline the handoff to fabricators, reduce errors, and improve collaboration. This post walks through how to support real-world coordination using these tools in practice. 1. Model and Analyze the Steel Frame in RISA-3D Start by building your structural steel frame in RISA-3D. Define geometry, assign member sizes, apply loads, and analyze the model. Once you're satisfied with the analysis results, RISA-3D provides the connection forces—axial, shear, and moment reactions—for each member end. 2. Export Connection Forces to RISAConnection Next, send selected members and their design forces to RISAConnection. This direct integration eliminates the need to manually transfer loads or recreate geometry. Once in RISAConnection, you can: Choose from a library of shear, moment, and braced connections Model the full geometry, including bolt patterns, welds, and gusset plates View pass/fail results for each limit state, with clear failure mode…
Read More
It’s easy to apply tapered surface loads to plates in RISA-3D by stepping up the loads from one level to the next.
In RISA-3D you can automatically apply notional loads to your structure to comply with your steel code (such as AISC 360). Notional loads take into account a building’s actual out-of-plumbness by adding de-stabilizing lateral loads. The AISC 360 recommends either 0.2% or 0.3% of the vertical loads...
When running a truss model in RISA-3D or RISA-2D, it’s quite common to receive an instability warning, but these can be easily resolved by following a few simple rules.
In Aluminum design, the welded areas have a decreased material strength and RISA-3D can assign any material strength to the members based on the Material spreadsheet.
After solving a model with Member Area Loads, RISA-3D will automatically create Transient Basic Load Cases that allow the user to verify load distribution.
RISA-3D will now check your model for errors by summing the reactions in your model and comparing them to the applied loads. This occurs for the global X, Y, and Z directions. If RISA identifies that the reactions do not equal the applied loads then the software will show a warning message to the...
In RISA-3D, there are many different applications that require you to define Member Type in your model including AISC 15th Edition steel design, Seismic Design, Concrete design, and models that will be transferred to Autodesk Revit.
V-Brace frames in RISA-3D seismic design have unbalanced forces shown on both the beams and braces. As brace frames displace under lateral loads, one brace will buckle and its force decreases while the other brace in tension will have an increase of force until it reaches yield.
The bending and axial code checks for single angles differ somewhat from other shape types, because single angles behave quite differently in bending and compression depending on how they are braced along their length.
Our monthly "Structural Moment" newsletter is the best way to keep up with RISA’s product updates, new releases, new features, training events, webinars and more...