
August 27, 2020
VIDEO: Creating Custom Shapes in RISA-3D
Learn how to build custom steel and concrete shapes using RISASection and then import them into RISA-3D to incorporate them in analysis and design.
In structural steel projects, the transition from design to fabrication is a common source of coordination challenges. One of the biggest pain points? Connection design. Whether it’s miscommunication on end reactions or unclear design intent, connection assumptions can break down in the gap between engineering and detailing. By using RISA-3D and RISAConnection—and leveraging direct integrations with SDS2 and Tekla Structures—structural engineers can streamline the handoff to fabricators, reduce errors, and improve collaboration. This post walks through how to support real-world coordination using these tools in practice. 1. Model and Analyze the Steel Frame in RISA-3D Start by building your structural steel frame in RISA-3D. Define geometry, assign member sizes, apply loads, and analyze the model. Once you're satisfied with the analysis results, RISA-3D provides the connection forces—axial, shear, and moment reactions—for each member end. 2. Export Connection Forces to RISAConnection Next, send selected members and their design forces to RISAConnection. This direct integration eliminates the need to manually transfer loads or recreate geometry. Once in RISAConnection, you can: Choose from a library of shear, moment, and braced connections Model the full geometry, including bolt patterns, welds, and gusset plates View pass/fail results for each limit state, with clear failure mode…
Read More
Learn how to build custom steel and concrete shapes using RISASection and then import them into RISA-3D to incorporate them in analysis and design.
When using RISA Integration between RISASection and RISA-3D, RISA-2D and/or RISAFloor, there are a few common mistakes that people make when attempting to access the RISASection files from the Shape Database.
There are multiple options in RISA-3D and RISAFloor to create a custom shape not available in the program databases. The first, is to utilize RISASection in order to create cross-sections, calculate section properties and import the shape directly into RISA-3D. For more information on integrating...
Use RISASection to find the properties of built-up steel sections, then model beams using the same section properties in RISA-3D and get full code-checks using AISC 360. This webinar will teach you how to use RISASection quickly and easily to determine complex section properties.
RISASection v2 includes updated torsional shape properties for a more accurate analysis. Check out the video below for more information:
In order to get code calculations, RISA-3D and RISA-2D need to know what type of shape would be most similar to yours. This is because the program needs to use the correct code equations for your shape type.
RISASection 2.0 includes the ability to assign your section as one of the predefined hot rolled steel Shape Types (Wide Flange, Channel, Tube, etc.). This means that when the shape is imported into RISA-3D, you will now be able to get design results and code checks for the member.
The latest version of RISASection, includes a powerful new DXF import feature. This feature allows the user to import any 2D geometry into RISASection for the calculation of the cross-sectional properties and the import into RISA-2D, RISA-3D or RISAFloor for use in the larger model.
Modeling built-up or composite sections can easily be done in RISASection. Because the properties of such a section are computed using a weighted summation of the transformed shape properties, RISASection uses a Property Multiplier to specify the relative weight of a single shape in a built up...
Our monthly "Structural Moment" newsletter is the best way to keep up with RISA’s product updates, new releases, new features, training events, webinars and more...