
November 11, 2016
Adding Roof Parapets in RISAFloor
RISAFloor v11 now includes the option to add parapets and parapet loading to a building.
Light-framed construction has become increasingly prevalent in mid-rise and modular development, driven by its cost-efficiency, speed of construction, and adaptability. But with flexibility comes complexity. Engineers designing with wood and cold-formed steel (CFS) must navigate a unique set of challenges: diaphragm behavior, segmented shear walls, buckling sensitivity, and code-specific checks that differ from traditional hot-rolled steel or reinforced concrete structures. This article explores practical modeling and design approaches for light-framed buildings, focusing on how structural engineers can balance constructability, analysis clarity, and compliance with governing codes. Diaphragm Behavior: Not Always Rigid In light-framed buildings, flexible diaphragms are often assumed due to the nature of wood sheathing or light-gauge decking. However, as buildings increase in size and irregularity, this assumption deserves scrutiny. Flexible diaphragm assumptions work well in rectangular buildings with regular framing, but irregular load paths or large openings may require semi-rigid modeling to capture torsional behavior. Engineers should consider the influence of diaphragm stiffness when assigning lateral forces, especially in hybrid systems where part of the structure may be stiffer or tied into concrete cores. In projects where semi-rigid diaphragm analysis was warranted, integrating tools like finite element meshing helped visualize how in-plane stiffness impacted overall response—particularly in designs…
Read More
RISAFloor v11 now includes the option to add parapets and parapet loading to a building.
RISAFloor does not record the applied area loads in a spreadsheet. To simplify modeling, it instead assumes a default area load over the entire diaphragm area. Additionally, you are free to apply area loads beyond the default loads. Whatever is drawn last will be considered the applied loading...
In a model that contains both RISAFloor and RISA-3D data it is possible to define your diaphragms as either flexible or rigid for lateral design. You can do this from the Diaphragms spreadsheet in either program:
When using RISA Integration between RISASection and RISA-3D, RISA-2D and/or RISAFloor, there are a few common mistakes that people make when attempting to access the RISASection files from the Shape Database.
RISAFloor has the ability to assign camber design rules which allow the user more control over which members are cambered. A camber is the slight upward curvature of a steel beam which is used to compensate for deflection. A user can assign a camber directly to a member or set up design rules to...
Mechanically graded wood materials have been added for the AWC NDS 2015 design code per Table 4C, and CSA O86-14 design code per tables 6.3.2 and 6.3.3. This specification includes the updated MEL and MSR design values.
The latest versions of RISA-3D and RISAFloor now incorporate the AWC NDS 2015. The new provisions have been implemented in RISA-3D v14.0 and RISAFloor v10.0 and can be utilized by selecting the AWC NDS-15: ASD from the Wood dropdown menu on the Codes tab of Model Settings.
The new ACI 318-14 code has been implemented into RISA-3D v14, RISAFloor v10, and RISAFoundation v8.
Our monthly "Structural Moment" newsletter is the best way to keep up with RISA’s product updates, new releases, new features, training events, webinars and more...