
August 21, 2019
Enhanced Property Display and Modification
In structural engineering, few design challenges are as rewarding—or as unforgiving—as the tall building. While gravity systems and code checks form the backbone of any structural project, once a structure rises beyond ten or fifteen stories, a shift occurs. Wind and seismic forces begin to dominate. Story drift and torsional irregularities become non-negligible. Load paths grow increasingly indirect. And design decisions, if not carefully made early on, can have exponential consequences higher in the structure. Tall buildings are not simply “bigger” versions of short ones. They behave differently. And understanding those differences is essential for any engineer working in an urban environment where building vertically is often the only viable path forward. Modeling for Reality, Not Just Code The foundation of any successful tall building design lies in the model—its assumptions, resolution, and degree of abstraction. Many engineers begin with simplified representations: rigid diaphragms, idealized connections, and linear material properties. This is practical and often sufficient for early design phases. But as the building increases in height and complexity, those assumptions may start to mask critical behaviors. Semi-rigid diaphragm modeling, for instance, allows engineers to capture in-plane flexibility of floor systems—especially important in buildings with irregular cores, open floor plans,…
Read More
The new release of RISA-3D is right around the corner! Check out our teaser videos to enjoy a sneak peek at some of the most exciting new features!
Tension or Compression (T/C) Only members are commonly used in steel buildings when modeling braced frames that resist lateral load.
When modeling building structures using steel or composite steel floors, engineers typically utilize rigid diaphragms to distribute lateral loads (wind and seismic) to lateral load resisting elements such as shear walls, moment frames and braced frames. Rigid diaphragms represent a plane of very...
When using semi-rigid diaphragms in a RISAFloor/RISA-3D model, it is possible to see negative moments at the ends of pinned beams as a result of the link between the semi-rigid diaphragm and the beam-column connection.
RISA-3D has two ways of automatically generating seismic-related Basic Load Categories (BLCs) which can be later referenced in the Load Combinations (LCs):
RISA-3D is one of the few pieces of software on the market offering wood shear wall analysis and design accompanied by multiple design methods to best suit your detailing needs.
Applying a Custom Rebar Layout in RISA-3D: To begin creating a custom rebar layout, simply click the Custom Rebar Layout button located in the Advanced tab of the ribbon toolbar.
In RISA-3D, the current method of design for masonry lintels is Simply Supported where the masonry lintels are idealized into a simply supported pin-pin beam configuration. Now, masonry lintels can instead be analyzed using finite element analysis. With this method, the lintel will be fully...
Our monthly "Structural Moment" newsletter is the best way to keep up with RISA’s product updates, new releases, new features, training events, webinars and more...