
October 26, 2010
How to Use Spreadsheets More Effectively in RISA
RISA includes various advanced spreadsheet operations that make reviewing input and results easy.
With the adoption of ASCE 7-22, the concept of a multi-period response spectrum has been added to seismic design requirements. While this provides more accurate hazard representation, it also means engineers need to generate and input additional site-specific data. This quick workflow shows how to gather that data from the ASCE Hazard Tool and use it in RISA’s site parameters table for seismic load generation. Why This Matters for Engineers? Multi-period response spectra reflect more realistic ground motion characteristics and will increasingly be required as jurisdictions adopt ASCE 7-22. By pulling site-specific values directly from the ASCE Hazard Tool, engineers can ensure compliance and avoid unnecessary assumptions. The multi-period approach can result in higher or lower design forces depending on the building’s period and site class, but it always provides more accurate seismic representation than the traditional two-point method. Download the latest versions of RISA that supports ASCE 7-22 below. Step 1: Generate Multi-Period Spectrum Data Go to the ASCE Hazard Tool. Enter your project location (address, coordinates, or site description). Select ASCE 7-22 as the building code. Navigate to the seismic hazard results and download/export the Multi-Period Response Spectrum data. Step 2: Copy Data Points into RISA Open RISA…
Read More
RISA includes various advanced spreadsheet operations that make reviewing input and results easy.
To best understand how plates interact with each other you must first understand the concept of Physical Members. The important thing to keep in mind is that plates are not physical members. A plate is defined using either three or four joints, and it only connects to other plates at those joints....
When you have a deep column, it is necessary to model the beam so that it connects to the face of the column. This results in an eccentricity at the joint. RISA-3D offers two ways to model this eccentricity.
The customizable toolbar is a new feature in RISAFloor. It’s really useful and you may have overlooked it. You’ll find all of your familiar buttons as well some new buttons which make reviewing your model and results easier.
There are four different values for Unbraced lengths in RISA-3D, RISA-2D and RISAFloor. Two are for axial calculations and two are for bending calculations.
Members (beams, columns, braces, etc.) are defined in RISA by an I-Node and a J-Node. While you and I see a beam occupying physical space between two columns, most programs see a line between Point I and Point J. This is known as a non-physical member. See the image below:
If you have ever tried to solve a two-dimensional model in RISA-3D, you have ultimately run into instabilities in your model because your model has no out of plane restraint.
Our monthly "Structural Moment" newsletter is the best way to keep up with RISA’s product updates, new releases, new features, training events, webinars and more...