
September 27, 2018
Using Analysis Offsets in RISA-3D
Have you ever wondered what the Analysis Offset feature does? Let’s take a look at how this feature can be used to model members at top of steel.
Rigid diaphragms in RISA-3D are a powerful way to model how floor systems distribute lateral loads. By forcing all connected nodes to move together in-plane, they effectively capture the stiffness of a concrete slab or diaphragm deck—often simplifying analysis without sacrificing accuracy. However, when rigid diaphragms are combined with sloping members, they can introduce unexpected behavior that changes how the structure resists loads—sometimes creating a hidden “tension tie” that doesn’t exist in the real system. When Rigid Diaphragms Alter the Model’s Behavior Consider a simple moment frame with sloped beams under gravity loads—common in pre-engineered metal buildings. Model 1: No rigid diaphragm applied Model 2: Identical frame, but with a rigid diaphragm located at the eaves When reviewing the strong-axis bending moments, column base reactions, and thrust forces: The first frame behaves as expected. The second frame (with the rigid diaphragm) shows reduced bending moments and smaller thrust reactions at the column bases. At first glance, this might seem like an improvement—but it’s actually unrealistic behavior caused by the diaphragm. Why It Happens: The “Hidden Tension Tie” In the model with the rigid diaphragm, the diaphragm prevents the eaves from moving apart under load. This effectively turns the diaphragm into…
Read More
Have you ever wondered what the Analysis Offset feature does? Let’s take a look at how this feature can be used to model members at top of steel.
The new AISC 360-16 15th Edition changes have been implemented into RISA-3D v17.0 and RISAFloor v13.0.
“Why am I receiving a P-Delta instability error when I run my DL + LL load combination? I don’t see this error when I run my lateral load only combination.”
One of the support questions we get most often is, “How can I model a cable element in RISA-3D?” Cables that are straight and experience only axial loading can be easily modeled. When modeling structures with cables (such as guyed structures) the cables can be modeled as tension only and doing so...
For concrete column members, the load combination producing the maximum shear code check is reported in the Detail Report and corresponding Results spreadsheet. Since concrete is evaluated based on a batch solution, this can be useful when shear governs the design.
RISA-3D includes material specific checkboxes on the Design tab of the Load Combinations spreadsheet that allow you to define the load combinations that shall be checked for members of different materials.
RISA-3D now includes plate elements in the Material Takeoff.
There are many different types deflection values calculated by RISA-3D. Let’s take a deeper dive into each.
RISA-3D v16.0.4 introduces an enhancement that will allow for more control over the beam deflection ratio through Deflection Ratio Options. As part of the member properties, you can now designate the ends of single and multi-span beams as a cantilever or supported. This will determine whether the...
Our monthly "Structural Moment" newsletter is the best way to keep up with RISA’s product updates, new releases, new features, training events, webinars and more...