
May 3, 2011
How Do I Consider Welded Aluminum Connections in RISA-3D?
In Aluminum design, the welded areas have a decreased material strength and RISA-3D can assign any material strength to the members based on the Material spreadsheet.
In structural steel projects, the transition from design to fabrication is a common source of coordination challenges. One of the biggest pain points? Connection design. Whether it’s miscommunication on end reactions or unclear design intent, connection assumptions can break down in the gap between engineering and detailing. By using RISA-3D and RISAConnection—and leveraging direct integrations with SDS2 and Tekla Structures—structural engineers can streamline the handoff to fabricators, reduce errors, and improve collaboration. This post walks through how to support real-world coordination using these tools in practice. 1. Model and Analyze the Steel Frame in RISA-3D Start by building your structural steel frame in RISA-3D. Define geometry, assign member sizes, apply loads, and analyze the model. Once you're satisfied with the analysis results, RISA-3D provides the connection forces—axial, shear, and moment reactions—for each member end. 2. Export Connection Forces to RISAConnection Next, send selected members and their design forces to RISAConnection. This direct integration eliminates the need to manually transfer loads or recreate geometry. Once in RISAConnection, you can: Choose from a library of shear, moment, and braced connections Model the full geometry, including bolt patterns, welds, and gusset plates View pass/fail results for each limit state, with clear failure mode…
Read More
In Aluminum design, the welded areas have a decreased material strength and RISA-3D can assign any material strength to the members based on the Material spreadsheet.
After solving a model with Member Area Loads, RISA-3D will automatically create Transient Basic Load Cases that allow the user to verify load distribution.
RISA-3D will now check your model for errors by summing the reactions in your model and comparing them to the applied loads. This occurs for the global X, Y, and Z directions. If RISA identifies that the reactions do not equal the applied loads then the software will show a warning message to the...
In RISA-3D, there are many different applications that require you to define Member Type in your model including AISC 15th Edition steel design, Seismic Design, Concrete design, and models that will be transferred to Autodesk Revit.
V-Brace frames in RISA-3D seismic design have unbalanced forces shown on both the beams and braces. As brace frames displace under lateral loads, one brace will buckle and its force decreases while the other brace in tension will have an increase of force until it reaches yield.
The bending and axial code checks for single angles differ somewhat from other shape types, because single angles behave quite differently in bending and compression depending on how they are braced along their length.
The Seismic Provisions in RISA-3D will check various design and code check requirements according to the AISC design provisions (AISC 360-2005, AISC 341-2005, AISC 358-2009). Seismic Design Rules can be applied to any member in the model, just follow the steps listed below.
The Seismic Design rules can be found in RISA-3D on the Data Entry toolbar or in the Spreadsheets menu. Below is a quick-reference description of the entries required. For further information refer to the Online Help File > Seismic Detailing.
When a model is solved that contains Member Area Loads, the program automatically attributes them to the applicable members within the defined area of the applied load. The load is attributed to the members as distributed loads that RISA-3D defines as Transient Loads.
Our monthly "Structural Moment" newsletter is the best way to keep up with RISA’s product updates, new releases, new features, training events, webinars and more...